Rényi β - expansions of 1 with β > 1 a real algebraic number , Perron numbers and a classification problem

نویسنده

  • Jean-Louis VERGER-GAUGRY
چکیده

We prove that for all algebraic number β > 1 the strings of zeros in the Rényi βexpansion dβ(1) of 1 exhibit a lacunarity bounded above by log(s(Pβ))/ log(β), where s(Pβ) is the size of the minimal polynomial of β. The conjecture about the specification of the β-shift, equivalently the uniform discreteness of the sets Zβ of β-integers, for β a Perron number is discussed. We propose a classification of algebraic numbers β > 1 according to the asymptotic “quotient of the gap” value of the Rényi β-expansion of 1 and examplify it, in a complementary classification of Blanchard’s with the classes C1 to C5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the dichotomy of Perron numbers and beta-conjugates

Let β > 1 be an algebraic number. A general definition of a beta-conjugate of β is proposed with respect to the analytical function fβ(z) = −1 + ∑ i≥1 tiz i associated with the Rényi β-expansion dβ(1) = 0.t1t2 . . . of unity. From Szegö’s Theorem, we study the dichotomy problem for fβ(z), in particular for β a Perron number: whether it is a rational fraction or admits the unit circle as natural...

متن کامل

Beta-conjugates of Real Algebraic Numbers as Puiseux Expansions

The beta-conjugates of a base of numeration β > 1, β being a Parry number, were introduced by Boyd, in the context of the Rényi-Parry dynamics of numeration system and the beta-transformation. These beta-conjugates are canonically associated with β. Let β > 1 be a real algebraic number. A more general definition of the beta-conjugates of β is introduced in terms of the Parry Upper function fβ(z...

متن کامل

Uniform distribution of Galois conjugates and beta-conjugates of a Parry number near the unit circle and dichotomy of Perron numbers

Concentration and equi-distribution, near the unit circle, in Solomyak’s set, of the union of the Galois conjugates and the beta-conjugates of a Parry number β are characterized by means of the Erdős-Turán approach, and its improvements by Mignotte and Amoroso, applied to the analytical function fβ(z) = −1 + ∑ i≥1 tiz i associated with the Rényi β-expansion dβ(1) = 0.t1t2 . . . of unity. Mignot...

متن کامل

Confluent Parry numbers, their spectra, and integers in positive- and negative-base number systems

In this paper we study the expansions of real numbers in positive and negative real base as introduced by Rényi, and Ito & Sadahiro, respectively. In particular, we compare the sets Z+β and Z−β of nonnegative β-integers and (−β)-integers. We describe all bases (±β) for which Z+β and Z−β can be coded by infinite words which are fixed points of conjugated morphisms, and consequently have the same...

متن کامل

beta-Expansions in algebraic function fields over finite fields

In the present paper, we define a new kind of digit system in algebraic function fields over finite fields. There are striking analogies of these digit systems to the well known β-expansions defined in R+. Results corresponding to classical theorems as well as open problems will be proved. In order to pursue this analogy we will recall the definition of real β-expansions and state the classical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004